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ABSTRACT: An iterative direct aldol reaction using a C3
propionate unit as an aldol donor offers expeditious access to
polyketide assembly in a highly diastereo- and enantioselective
manner. An all-syn polyketide array with four consecutive
stereogenic centers was efficiently constructed by an aldol
reaction of thiopropionamide via soft Lewis acid/hard
Breonsted base cooperative catalysis. This iterative aldol
strategy led to an enantioselective synthesis of (—)-mem-
brenone A and B.

embrenones A—C are marine natural products with a
hexapropionate architecture with a polysubstituted y-
dihydropyrone core (Figure 1). These products were isolated

(+)-membrenone A: R = Me
(+)-membrenone B: R=H

{+)-membrenone C

Figure 1. Structures of natural membrenones A—C with the proposed
absolute configuration.

from the skin of the Mediterranean mollusc Pleurobranchus
membranaceus by Ciavatta et al. in 1993." Membrenones were
considered as defense secretions to protect vulnerable soft-
bodied molluscs against hostile predators. The scarcity of these
products has hampered systematic biological studies. The five
consecutive stereogenic centers (C6—10) initially presented an
ambiguous stereochemistry, but a systematic stereoselective
synthesis by Sampson and Perkins confirmed the relative
configurations and revealed an inconsistency in the originally
assigned optical rotation.” Although the absolute configuration
remains unsubstantiated due to the unavailability of the natural
material, the accumulated data indicate that the natural
membrenones are (+)-enantiomers with the absolute stereo-
chemistry depicted in Figure 1.° Ward et al. reported a
stereocontrolled synthesis of (—)-membrenone B by a
sequential assembly of thiopzrran units through an aldol reaction,
followed by desulfurization.*> The stereogenic propionate array
of these natural products attracted our attention as synthetic
targets to showcase our direct aldol protocol.® Herein we report
the enantioselective synthesis of (—)-membrenone A and B by
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stereoselective assembly of
propionate units
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an iterative use of direct catalytic asymmetric aldol reaction
developed by our group. The unavailability of the natural
material limits biological studies, which led us to devise a
synthetic route that can be applied to the synthesis of both
natural membrenones and their antipodes. A direct catalytic
asymmetric aldol reaction of thiopropionamide 1 allows for
efficient stereoselective construction of the syn-propionate unit,
and both enantiomers can be produced by changing the sense of
the available chiral ligands with similar cost (Scheme 1).

Scheme 1. Iterative Direct Aldol Strategy for the
Construction of the Propionate Array
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Thioamide bearing a longer alkyl chain can be used as an aldol
donor to furnish elongated derivatives. Facile transformation of
the thioamide functionality to aldehyde allowed for seamless
entry into the second direct aldol reaction to furnish four
consecutive stereogenic centers.

The “direct” catalytic asymmetric aldol reaction is charac-
terized by the direct use of an aldol donor substrate without
preformation of an active enolate species, allowing for a truly
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catalytic protocol to afford enantioenriched aldol products with
perfect atom economy.”® Chemoselective and catalytic
enolization of aldol donors in the presence of fairly enolizable
aldehydes (as an aldol acceptor) is indispensable to initiate the
reaction, which severely limits the scope of compatible aldol
donors. As part of our continuing studies of the direct aldol
reaction, we reported that soft Lewis acid/hard Brensted base
cooperative catalysis is a viable strategy to enable chemoselective
enolization of soft Lewis basic aldol donors.” Thiopropionamide
1 serve as an efficient aldol donor to undergo chemoselective
enolization, and a subsequent aldol reaction with propanal by a
cooperative catalyst comprising mesitylcopper, (R,R)-Ph-BPE,
and 2,2,5,7,8-pentamethylchromanol (2), exclusively producing
the syn-aldol adduct 3 among four possible isomers (Scheme
2).%"%!" The thioamide functionality of 3 was transformed into

Scheme 2. Iterative Direct Catalytic Asymmetric Aldol
Reaction To Construct Tripropionate Unit 6 Bearing
Consecutive Four Stereogenic Centers
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an aldehyde for the second aldol reaction. After protecting the
secondary alcohol by TBS under conventional conditions,
thioamide was activated by S-methylation with MeOTf."* The
intermediary iminium thioether was highly electrophilic, and
subsequent treatment with LiAl(O'Bu);H afforded the aldehyde
5."> The second aldol reaction using sterically congested
aldehyde § proceeded smoothly with a 2 mol % catalyst loading,
affording the desired tripropionate unit 6 bearing four
consecutive stereogenic centers in 80% yield with 99% ee.'*
Minor diastereomers were observed in ca. 10% and readily
separated by chromatography.

With 6 in hand via the iterative aldol protocol, further
elongation was pursued to construct the requisite y-pyrone unit
for the total synthesis of (—)-membrenone A and B (Scheme 3).
Aldehyde 7 bearing a TBDPS protecting group at the S-hydroxyl
group was selected because the analogous bis-TBS-protected
aldehyde is prone to f-elimination under the basic conditions of
the aldol reaction to give a,f-unsaturated aldehyde. TBDPS-
protected 7 was more resistant to elimination and worked well
under the screening of aldol reaction conditions with 3-
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Scheme 3. Synthesis of (—)-Membrenone A and B
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pentanone as an aldol donor. Various attempts of Lewis acid
mediated aldol reactions featuring stereoinduction resulted in
particularly little conversion, presumably due to the steric
hindrance of the TBDPS group. Employment of organocatalysts
barely led to scarce production of aldol adducts. The Felkin—
Anh model suggested that the aldol addition preferentially
delivered the desired 7S stereochemistry."> Therefore, simple Li
enolate conditions were attempted with various solvents.
Although the reaction using LHMDS in THF produced
mixtures of diastereomers, less coordinative solvents gave the
preferred formation of the diastereomer 8, and ether solvent was
optimal to obtain 8 in 72% yield. The absolute configurations of
the newly formed stereogenic centers of 8 were determined to
be the desired 6S,7S after derivatization, as outlined in Scheme
4.'° Treatment with aqueous HF in acetonitrile allowed for
selective removal of the TBS group, and subsequent protection

Scheme 4. Stereochemical Determination of 8
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by a benzyl group with Dudley’s reagent gave 10.'
Deprotection of the TBDPS group of 10 by TBAF led to the
spontaneous formation of cyclic ketal 11 as a single
diastereomer, which allowed us to confirm the desired
stereochemistry at C6 and C7 by NOE experiments.'® Given
the unequivocal stereochemistry of the six consecutive stereo-
genic centers of 8, further transformation toward (—)-mem-
brenone B was pursued. A propionyl group was installed to a
free hydroxyl group to give the cyclization precursor 12, which
gave rise to y-pyrone 13 by following the reported
procedure.*'® Treatment with aqueous HF removed the TBS
group, leaving the TBDPS group untouched, and subsequent
oxidation by Dess-Martin periodinane gave 15.*° Replacement
of the TBDPS group with the requisite acyl group was
performed with TASF-mediated deprotection and acylation,
affording (—)-membrenone A and B with spectroscopic data
identical to those previously reported.”*

In conclusion, we demonstrated that iterative use of the direct
aldol reaction of a thiopropionamide is a powerful strategy for
furnishing the polyketide array in a highly stereocontrolled
manner. The requisite catalyst was readily prepared from
commercial sources, and facile reduction of the thioamide
functionality of the aldol adduct delivered the corresponding
aldehyde to engage the subsequent aldol reaction. Biological
studies of the synthetic (—)-membrenone A and B, and further
application of the iterative aldol reaction in enantioselective
polyketide synthesis, will be reported in due course.
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